Our reference: NEUCOM21392

AUTHOR QUERY FORM

<table>
<thead>
<tr>
<th>Journal: NEUCOM</th>
<th>Please e-mail your responses and any corrections to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article Number: 21392</td>
<td>E-mail: correctionsaptara@elsevier.com</td>
</tr>
</tbody>
</table>

Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader then please also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return your corrections within 48 hours.

Your article is registered as a regular item and is being processed for inclusion in a regular issue of the journal. If this is NOT correct and your article belongs to a Special Issue/Collection please contact k.s@elsevier.com immediately prior to returning your corrections.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof. Click on the “Q” link to go to the location in the proof.

<table>
<thead>
<tr>
<th>Location in article</th>
<th>Query / Remark: click on the Q link to go</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>AU: The author names have been tagged as given names and surnames (surnames are highlighted in teal color). Please confirm if they have been identified correctly.</td>
</tr>
<tr>
<td>Q2</td>
<td>AU: Please validate the section “Declaration of Competing Interest”.</td>
</tr>
</tbody>
</table>

Please check this box or indicate your approval if you have no corrections to make to the PDF file

Thank you for your assistance.
Highlights

• We present a new dynamic surface control (DSC) method for fully-actuated mechanical systems.
• We incorporate integral terminal sliding mode (TSM) terms into the conventional DSC error surfaces.
• We use raised-cosine radial basis functions (RBFs) to adaptively estimate the uncertainty/disturbances upper-bound.
• We show the closed-loop stability as well as the tracking error convergence by Lyapunov-based analysis.
Adaptive neural dynamic surface control of mechanical systems using integral terminal sliding mode

Jafar Keighobadi*, Mehran Hosseini-Pishrobat, Javad Faraji
Faculty of Mechanical Engineering, University of Tabriz, 29 Bahman, Tabriz, Iran

ARTICLE INFO
Article history:
Received 13 August 2019
Revised 3 October 2019
Accepted 13 October 2019
Available online xxx
Communicated by Prof. Yugang Niu

Keywords:
Dynamic surface control
Mechanical systems
Neural networks
Raised-cosine radial basis functions
Terminal sliding mode

ABSTRACT
This paper studies the robust tracking control problem of fully-actuated mechanical systems using a novel integral dynamics surface control (DSC) method. We replace the conventional DSC error surfaces with new nonlinear integral surfaces to generate a quasi-terminal sliding mode (TSM) in the tracking error trajectories. Then, we follow the recursive, Lyapunov-based design procedure of the DSC to obtain the control law. The resultant quasi-TSM adjusts the error convergence rate according to the distance from the origin. To achieve robustness against structural variations of the mechanical system as well as external disturbances, we use nonlinear damping combined with a radial basis function neural network (RBFNN) approximator. The RBFNN adaptively identifies the upper-bound of the uncertainty/disturbances to prevent conservative, high-gain control inputs. Moreover, we use raised-cosine basis functions, which have compact supports, to improve the computational efficiency of the RBFNN. Through Lyapunov-based stability analysis, we show the boundedness and ultimate boundedness of the closed-loop system as well as the TSM-induced convergence of the tracking errors. Detailed numerical simulations support the efficacy of the proposed control method.

© 2019 Published by Elsevier B.V.

1. Introduction
Motivation. Being rooted in the integrator backstepping [1], dynamic surface control (DSC) is a systematic design method for controlling uncertain nonlinear systems [2,3]. Similar to backstepping, DSC tackles a tracking control problem by introducing a set of coordinates that combine the tracking errors with auxiliary control variables. However, unlike backstepping, DSC uses low-pass filters to avoid direct differentiation of these variables. A number of papers have shown that augmenting the DSC error surfaces with suitable integral terms improves steady-state tracking and robustness [4–7]. The motivation for the present paper stems from [7] where the robustness of the DSC is enhanced significantly by adding nonlinear proportional-integral (PI)-type terms. The generalization with respect to [7] is twofold: (i) we consider a general n-degrees-of-freedom (DOF) mechanical system conforming to Euler–Lagrange equations rather than a 3-DOF gyroscope; (ii) instead of a quasi-sliding mode term defined by hyperbolic tangent functions, we consider a more general structure based on terminal sliding mode (TSM) theory.

Related literature. Based on the variational principles of mechanics, the Euler–Lagrange equations provide an effective mathematical framework for the analysis of many-body, many-DOF systems [8,9]. In this regard, the control problems of mechanical systems have been extensively studied in the literature, in the context of either Euler–Lagrange systems [9] or robotics [10,11]. Hence, numerous control methods are proposed for the tracking problem of fully-actuated mechanical systems. The majority of the reported controllers rely upon feedback linearization and/or proportional–derivative (PD)-type control inspired by the celebrated Slotine and Li controller [9–12]. Using differential geometric methods, Bullo and Murray [13] studied the problem in a coordinate-free manner. In [3, chapter 6], a convex optimization-based dynamic surface controller was proposed and its disturbance attenuation properties were investigated. By applying the tools of convex analysis, Miranda-Villatoro et al. [14] proposed a class of set-valued controllers for the robust tracking control of Euler–Lagrange systems. For constant desired positions, Cruz-Zavala et al. [15] presented a finite-time controller that modifies the intrinsic energy functions of an Euler–Lagrange system.

Conventional sliding mode (SM) theory is based on the stabilization of a linear switching surface that reduces the order of the system dynamics and induces asymptotic stability of the system trajectories [16]. Sliding mode control (SMC) have been used to achieve strong robustness against a wide variety of uncertainties such as deterministic/stochastic disturbances, unknown nonlinear dynamics, and time-varying additive/multiplicative faults in the

Please cite this article as: J. Keighobadi, M. Hosseini-Pishrobat and J. Faraji, Adaptive neural dynamic surface control of mechanical systems using integral terminal sliding mode, Neurocomputing, https://doi.org/10.1016/j.neucom.2019.10.046

* Corresponding author.
E-mail address: Keighobadi@tabrizu.ac.ir (J. Keighobadi).

https://doi.org/10.1016/j.neucom.2019.10.046
0925-2312/© 2019 Published by Elsevier B.V.
ACTIVATE IN PRESS

J. Keighobadi, M. Hosseini-Pishrobat and J. Faraji / Neurocomputing xxx (xxxx) xxx

Please cite this article as: J. Keighobadi, M. Hosseini-Pishrobat and J. Faraji, Adaptive neural dynamic surface control of mechanical systems using integral terminal sliding mode, Neurocomputing, https://doi.org/10.1016/j.neucom.2019.10.046

actuators and/or sensors [16–18], TSM improves upon the conventional SM by incorporating nonlinear switching surfaces that result in the finite-time stability of the sliding motion [19–21]. Different variations of TSM have been used for robust, finite-time, high-precision control of dynamic systems in various applications [19,22]. In the area of robotics and mechanical systems, the merits of the TSM have attracted the attention of researchers. Nonsingular and continuous forms of TSM have been used for robust and finite-time control of rigid manipulators [23,24]. For fully-actuated mechanical systems, some papers have combined TSM with fractional derivatives/integrals to obtain a better convergence speed [25,26].

Inspired by the biological neurons, artificial neural networks (ANNs) – neural networks (NNs) in short – are powerful tools for data clustering, pattern classification, optimization, and universal function approximation [27]. The latter is of particular interest for control community as there exists a vast literature on the adaptive NN approximation-based control of nonlinear systems, for example, see [28–30]. Particularly, the approximation capabilities of NNs provides an effective framework for adaptive control of uncertain mechanical and robotic systems [28]. Sun et al. [31] used Gaussian radial basis functions (RBFs) to design an adaptive SM controller for robot manipulators; the controller is able to estimate the unmeasured joint velocities. Tran and Kang [32] combined radial basis function neural networks (RBFFNs) approximation with TSM for adaptive finite-time control of robot manipulators. Zhou et al. [33] presented a backstepping-based, adaptive RBFFN control for robot manipulators subject to dead-zone nonlinearity in their control inputs. Liu et al. [34] designed an adaptive NN controller, with the optimal dimension of the hidden NN layer, for robot control in task space.

Contributions. The main contribution of this paper is to present a new tracking controller for mechanical systems by combining the merits of DSC, TSM, and RBFFNs. The novelties and distinctive features of the proposed control method, in comparison with the existing ones, are as follows:

• The recursive design structure of DSC, equipped with integral action, enables us to induce a quasi-TSM at the kinematic level of the tracking control. Moreover, the nonlinear integral TSM surface adjusts the convergence rate of the tracking error according to its distance from the origin.

• Instead of sigmoid functions, we use hyperbolic tangent functions to produce the quasi-TSM. Thereby, the TSM error surface is sufficiently differentiable for DSC design purposes and, the chattering issue in the obtained control law is considerably alleviated.

• We tackle the issue of robustness at two levels. First, at the kinematic level, the proposed TSM grants a certain level of robustness to the position tracking error. Second, at the dynamic level, we employ nonlinear damping [1] in the DSC design. At this level, we also use an RBFFN to adaptively estimate the uncertainty upper-bound and to prevent conservative, high-gain control inputs. We note that, from the function approximation perspective, estimation of the upper-bound of the norm of a vector function demands less computational burden than estimating the function itself.

• In the RBFFN, we use raised-cosine basis functions in lieu of the commonly used Gaussian functions. The raised-cosine functions, unlike Gaussians, enjoy the property of having compact supports, resulting in the computational efficiency [35,36]. Besides, the recent paper [37] has shown that RBFs with compact supports can improve adaptive NNs’ learning performance by enhancing the level of excitation of their regressors.

Paper Organization. The organization of the remainder of this paper is as follows. Section 2 summarizes notation and required mathematical preliminaries. Section 3 states the control problem. Section 4 presents the main results on the integral DSC design. Section 5 contains further results about the TSM-based convergence of the tracking error. Section 6 elaborates a simulation example of controlling a two-link robot arm. Lastly, Section 7 concludes the paper.

2. Notation and Preliminaries

2.1. Notation

Throughout this paper, \mathbb{R}^+ denotes the set of nonnegative real numbers. We consider the Euclidean n-space, \mathbb{R}^n, equipped with its standard topology. $\|\cdot\|$ stands for the vector 2-norm. col(…, …) returns a vector stacked by the given arguments. $tr(\cdot)$ gives the trace of a matrix (\cdot), $\lambda_{\text{min}}(\cdot)$ and $\lambda_{\text{max}}(\cdot)$ return the minimum and the maximum eigenvalues of a real symmetric matrix (\cdot), respectively.

2.2. Mathematical preliminaries

Here, we review some important inequalities that we will use for the convergence analysis of TSM.

Lemma 1. Let $(v_i^1)_{i=1}^n$ and $(w_i^p)_{i=1}^n$ be two sequences of real numbers; we have the following inequalities:

1. (Jensen’s inequality [20,38]) Let $p > q > 0$, then
\[
\left(\sum_{i=1}^n |v_i|^q\right)^{\frac{p}{q}} \leq \left(\sum_{i=1}^n |v_i|^p\right)^{\frac{q}{p}}.
\]

2. (Hölder’s inequality [38]) Let $p > 1$ and $\frac{1}{p} + \frac{1}{q} = 1$, then
\[
\sum_{i=1}^n |v_i|w_i \leq \left(\sum_{i=1}^n |v_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^n |w_i|^q\right)^{\frac{1}{q}}.
\]

Lemma 2. For any $x \in \mathbb{R}$, $a \geq 0$, and $\epsilon > 0$, we have the inequality
\[
|x|^{a+1} - x|a|^\tan\left(\frac{x}{a}\right) \leq \delta_x e^{\epsilon+1}.
\]

Proof. We obtain, after some algebraic manipulation, the maximum value $\delta_x e^{\epsilon+1}$ for the function $|x|^{a+1} - |x|^a \tan\left(\frac{x}{a}\right)$ by setting its derivative to zero to find the extrema.

For a vector $x \in \mathbb{R}^n$, $a \geq 0$, and $\epsilon > 0$, we define
\[
Tanh^a(x) := \text{col}\left(|x|^{a+1} - x|a|^\tan\left(\frac{x}{a}\right)\right)^n.
\]

Lemma 3. For any vector $x \in \mathbb{R}^n$, $a \geq 0$, $\epsilon > 0$, and a diagonal positive definite matrix $L \in \mathbb{R}^{n \times n}$, we have
\[
\delta_x \epsilon_{\text{min}}(L)||x||^{a+1} - x^T \text{L} \text{Tanh}^a(x) \leq \delta_x e^{\epsilon+1} \text{tr}(L).
\]

Proof. Let $L = \text{diag}(l_i)_{i=1}^n$; applying Lemma 2 to each component of x and taking the sum over all components, we obtain
\[
\sum_{i=1}^n l_i|x|^{a+1} - x^T \text{L} \text{Tanh}^a(x) \leq \delta_x e^{\epsilon+1} \sum_{i=1}^n l_i.
\]

Now, we use Lemma 1 to obtain a lower bound of $\sum_{i=1}^n l_i|x|^{a+1}$ in terms of $\|x\|$ for different values of a:

\[
\sum_{i=1}^n l_i|x|^{a+1} \geq \sum_{i=1}^n l_i\|x\|^{a+1}.
\]
1. Case $a = 1$: By Rayleigh–Ritz inequality, we have
\[
\sum_{i=1}^{n} l_i |x_i|^{a+1} \geq \lambda_{\min}(L) \|x\|^2.
\]
(7)

2. Case $0 < a < 1$: In Jensen’s inequality (1), let $v_1 = l_1^a x_1$, $p = 2$, and $q = a + 1$:
\[
\left(\sum_{i=1}^{n} l_i |x_i|^2 \right)^{\frac{1}{2}} \leq \left(\sum_{i=1}^{n} l_i^{-1} |x_i|^{a+1} \right)^{\frac{1}{a+1}}.
\]
(8)

Since $\sum_{i=1}^{n} l_i^{-1} |x_i|^2 \geq \lambda_{\min}(L) \sum_{i=1}^{n} |x_i|^2$, we further have
\[
\sum_{i=1}^{n} l_i |x_i|^2 \geq \lambda_{\min}(L) \|x\|^{a+1}.
\]
(9)

3. Case $a > 1$: In Hölder’s inequality (2), let $v_1 = l_1^a x_1^a$, $w_i = 1$, $p = (a + 1)/2$, and $q = (a + 1)/(a - 1)$:
\[
\sum_{i=1}^{n} l_i^{-1} |x_i|^2 \leq \left(\sum_{i=1}^{n} l_i |x_i|^{a+1} \right)^{\frac{1}{a+1}}.
\]
(10)

which gives
\[
\sum_{i=1}^{n} l_i |x_i|^2 \geq \frac{\lambda_{\min}(L)}{\sqrt{a+1}} \|x\|^{a+1}.
\]
(11)

Combining (6) with (7), (9), and (11), we obtain the inequality (5).

Lemma 4. Consider a nonnegative function $v(.) \in \mathbb{R}^n$ that satisfies the differential inequality
\[
v(t) \leq -\alpha v^\alpha(t) - \beta \Phi^\beta(t),
\]
(12)

with $\alpha, \beta > 0$, $0 < a < 1$, and $b \geq 1$. Then, the following statements hold:

1. For all $t_0 \in \mathbb{R}^+$, $t \geq t_0$, $v(t)$ decreases monotonically and satisfies the inequality
\[
v^{1-a}(t) F \left[1, 1 - \frac{a}{b}, b - 2a + \frac{1}{a}; \frac{\beta}{\alpha} v^\beta(t) \right] \leq v^{1-a}(t_0) F \left[1, 1 - \frac{a}{b}, b - 2a + \frac{1}{a}; \frac{\beta}{\alpha} v^\beta(t_0) \right] - \alpha (1 - a) (t - t_0),
\]
(13)

where $F(., ., .)$ is Gauss’ hypergeometric function.

2. Starting from a nonzero initial value $v(t_0)$, we have $v(t) \leq c < v(t_0)$, for all $t \geq t_0 + t_c$ where the reaching time t_c is given by
\[
t_c := \frac{v^{1-a}(t_0)}{\alpha (1-a)} F \left[1, 1 - \frac{a}{b}, b - 2a + \frac{1}{a}; \frac{\beta}{\alpha} v^\beta(t_0) \right] - \frac{c^{1-a}}{\alpha (1-a)} F \left[1, 1 - \frac{a}{b}, b - 2a + \frac{1}{a}; \frac{\beta}{\alpha} c^{b-a} \right].
\]
(14)

Proof. By integration of the differential inequality (12), we have
\[
\int_{v(t_0)}^{v(t)} \frac{dv}{v^\alpha + \beta v^\beta} \leq - (t - t_0).
\]
(15)

The integrand in the left-hand side of (15) is a positive function while the right-hand side is negative. Hence, v is monotonically decreasing with respect to t. Furthermore, the change of variable
\[
w = v^\beta \Rightarrow
da \frac{1}{\alpha (b-a)} \int v^{\beta-a}(t) \frac{w^{\frac{1}{b}} dw}{1 + \frac{b}{a} w} \leq - (t - t_0).
\]
(16)

Accordingly, the reaching time to the set $v \leq c$ is
\[
t_c = \frac{1}{\alpha (b-a)} \int v^{\beta-a}(t) \frac{w^{\frac{1}{b}} dw}{1 + \frac{b}{a} w}
\]
(17)

Evaluating the integrals in (16) and (17) by using the formula 3.194.5 of [39] gives the inequality (13) and the reaching time (14), respectively.

2.3. Function approximation by neural networks

We consider an RBFNN with the input $x = \text{col} \{x_j\}_{j=1}^n \in \mathbb{R}^n$, a hidden layer composed of N neurons, and a single output. The output of the network is given by the nonlinear mapping $\theta^T \phi(x)$ where $\theta \in \mathbb{R}^N$ is the weight vector and $\phi(.) \in \mathbb{R}^N$ is the vector of basis functions. Using raised-cosine functions [35,40], the basis vector is defined as $\phi(x) := \phi(\phi(x))/\|\phi(\phi(x))\|_{1,\infty}$ where
\[
\phi_i(x) = \prod_{j=1}^{n} \phi_i \left(\frac{x_j - c_{ij}}{\sigma_{ij}} \right), \quad i = 1 : N.
\]
(18a)

\[
\phi_i(x) = \left\{ \begin{array}{ll}
\cos^2 \left(\frac{\pi x}{2} \right) & \text{for } |x| \leq 1, \\
0 & \text{elsewhere.}
\end{array} \right.
\]
(18b)

The parameters $c_{ij} \in \mathbb{R}$ and $\sigma_{ij} > 0$ determine the position of the center and the width of the ith raised-cosine function, respectively. The compact support of the ith basis function is $\prod_{j=1}^{n} |c_{ij} - a_{ij}| \quad \sigma_{ij} + c_{ij}$.

The RBFNNs with non-polynomial, almost everywhere continuous, locally essentially bounded basis functions are universal approximators for continuous functions over compact sets [36,41]. Hence, the raised-cosine RBFNN (18a) can approximate a continuous function on a compact set arbitrarily accurate. More specifically, let $f : \Omega \rightarrow \mathbb{R}$ be a continuous function and $\Omega \subset \mathbb{R}^n$ a compact set. For any $\xi > 0$, there exists a raised-cosine RBFNN, with sufficiently large dimension N, such that the approximation $f(x) = \theta^T \phi(x) + \zeta(x)$
(19)
satisfies the error bound, $\sup_{x \in \Omega} |\zeta(x)| < \xi$ for an ideal weight vector $\theta^* \in \mathbb{R}^N$ where [29]
\[
\theta^* = \left\{ \theta_{id} \in \mathbb{R}^N \mid \theta_{id} = \arg \min_{\theta \in \mathbb{R}^N} \left\{ \sup_{x \in \Omega} \left| f(x) - \theta^T \phi(x) \right| \right\} \right\}.
\]
(20)

3. System dynamics and formulation of the control problem

Consider an n-DOF mechanical system whose configuration space is parameterized by the generalized coordinates, $q_i \in \mathbb{R}$, $i = 1 : n$. Through Euler–Lagrange equations approach, the dynamics of the mechanical system is governed by the following differential equation [10]:
\[
M(q) \ddot{q} + C(q, \dot{q}) \dot{q} + D(q) + G(q) = u + \Delta(q, \dot{q}, w).
\]
(21)

where $q := \{q_1, \ldots, q_n\} \in \mathbb{R}^n$ is the vector of generalized coordinates, $\dot{q} := \{\dot{q}_1, \ldots, \dot{q}_n\} \in \mathbb{R}^n$ is the vector of generalized velocities, $\ddot{q} := \{\ddot{q}_1, \ldots, \ddot{q}_n\} \in \mathbb{R}^n$ is the vector of generalized accelerations, $M(q) = M^T(q) \in \mathbb{R}^{n \times n}$ is the inertia matrix, $C(q, \dot{q}) \in \mathbb{R}^{n \times n}$ is the Coriolis/centripetal matrix, $D(q) \in \mathbb{R}^n$ is the vector of dissipative forces, $G(q) \in \mathbb{R}^n$ is the vector of gravitational and/or nonlinear ear stiffness forces, $u \in \mathbb{R}^n$ is the vector of control forces/torques, $w \in \mathbb{R}^{m_w}$ is the vector of external disturbances, and the unknown function $\Delta(q, \dot{q}, w) \in \mathbb{R}^n$ accounts for the effects of unmodeled dynamics and external disturbances. The mechanical system [21] is subject to internal variations and parametric uncertainty. Hence, we assume that
\[
\begin{align*}
\Delta(q, \dot{q}, w) & = \varepsilon \Delta(q, \dot{q}, w), \\
\varepsilon & \leq \varepsilon_0 \quad \text{with } \varepsilon_0 \text{ fixed}.
\end{align*}
\]
\[M(q) = M_0(q) + \delta M(q). \]
\[C(q, \dot{q}) = C_0(q, \dot{q}) + \delta C(q, \dot{q}). \]
\[D(\dot{q}) = D_0(\dot{q}) + \delta D(\dot{q}). \]
\[G(q) = G_0(q) + \delta G(q). \]

where the subscript “0” denotes the nominal part and the symbol “\(\delta\)" stands for the variation from the nominal part. The mechanical system (21) satisfies the following properties that will be used in the control design [9,10].

Property 1. The inertia matrix \(M(q)\) is positive definite for all \(q \in \mathbb{R}^n\).

Property 2. The matrix \(M(q) - 2C(q, \dot{q})\) is skew-symmetric for all \((q, \dot{q}) \in \mathbb{R}^{2n}\).

We make the following assumption about the uncertainty and disturbances of the mechanical system (21).

Assumption 1. (i) The external disturbances are bounded, that is, \(\|w(t)\| \leq w_0\) for all \(t \in \mathbb{R}^+\) and some positive \(w_0\); (ii) there exist continuous positive functions \(\Delta_1^+ : \mathbb{R}^{2n} \rightarrow \mathbb{R}^+\) and \(\Delta_2^+ : \mathbb{R}^n \rightarrow \mathbb{R}^+\) such that the following inequality holds globally:

\[\|\Delta(\dot{q}, q, w)\| \leq \Delta_1^+(\dot{q}, q) + \Delta_2^+(w). \]

The control goal is to track a desired trajectory \(q_d(t) \in \mathbb{R}^n\) by \(q(t)\) in the sense that, in addition to the closed-loop stability, the performance measure \(\|q(t) - q_d(t)\|\) converges to zero or, at least, to a small compact set around zero as \(t \to \infty\). To this end, the controller should be robust against the internal variations (22) and provide a satisfactory performance in the presence of the external disturbances and unmodeled dynamics \(\Delta(q, \dot{q}, w)\).

Assumption 2. The desired trajectory \(q_d(\cdot)\) is \(C^2\), \(\dot{q}_d(\cdot)\) and \(\ddot{q}_d(\cdot)\) are available for control purposes, and \((q_d, \dot{q}_d, \ddot{q}_d) \in \Omega_d \times [-a_d, a_d]^3\) where \(\Omega_d \subset \mathbb{R}^{2n}\) is a compact set and \(a_d\) is a positive constant.

4. Integral dynamic surface control

To obtain a suitable tracking error dynamics, using the DSC formulation, we introduce the following tracking errors:

\[e_1 := q - q_d, \]
\[e_2 := \dot{q} - \dot{q}_d, \]
\[e_3 := \ddot{q} - \ddot{q}_d. \]

The vector \(e_1 \in \mathbb{R}^n\) is a direct measure of the tracking performance, \(\psi \in \mathbb{R}^n\) is an auxiliary control vector, \(\nu_d \in \mathbb{R}^n\) is the low-pass-filtered version of \(\psi\), \(e_3 \in \mathbb{R}^n\) is the filtering error, and \(T \in \mathbb{R}^{n \times n}\) is a positive definite matrix. The intermediary tracking error \(e_2 \in \mathbb{R}^n\) is defined to enable a recursive control design. To improve the robustness of the DSC, we further define the following integral error surfaces:

\[s_1 = e_1 + \mathcal{I}(e_1, t), \]
\[s_2 = HS_1 + e_2. \]

where \(\lambda > 0\), \(L_i \in \mathbb{R}^{n \times n}\) are diagonal positive definite matrices, \(0 < a_1 < a_2 \leq 1, a_3 = 0\) and \(\varepsilon > 0\).

Remark 1. The function \(\psi(\cdot)\) is \(C^1\) over \(\mathbb{R}^n\). Hence, after twice differentiation of \(\mathcal{I}(e_1, t)\), we will still have continuous functions.

Remark 2. The roles of the different terms of the function \(\psi(\cdot)\) in the convergence of the tracking error \(e_1\) are as follows. The first \((0 < a_1 < 1)\) and the second \((a_2 > 1)\) terms produce larger gains when \(e_1\) is near and far from the origin, respectively. In the case \(a_2 = 1\), the second term generates a uniform gain distribution. The last term \((a_3 = 0)\) is a robustifying term against bounded perturbations.

Remark 3. The role of the exponential term in (26) is to counteract the memory effect of the integration. Mathematically speaking, \(\mathcal{I}(e_1, t)\) satisfies the following bound:

\[\|\mathcal{I}(e_1, t)\| \leq \frac{1 - \exp(-\lambda t)}{\lambda} \sup_{0 \leq \xi \leq t} \|\psi(e_1(\xi))\|. \]

The DSC design is carried out by the following steps:

Step 1 (stabilization of \(s_1\)). We consider the candidate Lyapunov function

\[V_1 = \frac{1}{2}s_1^2. \]

whose time derivative, along the trajectories of (21), satisfies

\[\dot{V}_1 = s_1^T(-HS_1 + s_2 + e_1 + \nu - \dot{q}_d - \lambda \mathcal{I}(e_1, t) + \psi(e_1)). \]

According to the nonlinear damping [1], we obtain the auxiliary control input as

\[\psi(e_1, \dot{q}_d, t) = -K_1 s_1 + \lambda \mathcal{I}(e_1, t) - \psi(e_1) + \dot{q}_d. \]

where \(K_1 \in \mathbb{R}^{n \times n}\) is a design positive definite matrix. Hence, we have

\[\dot{V}_1 = -s_1^T(H + K_1)s_1 + s_1^T s_2 + e_1^T. \]

Step 2 (stabilization of \(s_2\)). Having Property 1 in mind, we consider the second candidate Lyapunov function as

\[V_2 = V_1 + \frac{1}{2}M(q)s_2^2. \]

Using Property 2, the time derivative of \(V_2\) is obtained as

\[\dot{V}_2 = s_1^T s_1 + s_2^T e_3 + s_2^T e_2^T (u + \delta f). \]

where

\[f := (I + C_0(q, \dot{q})H - M_0(q)H(H + K_1))s_1 + M_0(q)Hs_2 := + M_0(q)(T^{-1} + H)e_3 - D_0(\dot{q}) - C_0(q, \dot{q})\nu_d. \]

\[\delta f := (\delta C(q, \dot{q})H - \delta M(q)H(H + K_1))s_1 + \delta M(q)Hs_2 := + \delta M(q)(T^{-1} + H)e_3 - \delta D(\dot{q}) - \delta G(q) \]

\[- \delta C(q, \dot{q})\nu_d + \Delta(q, \dot{q}, w). \]

Let

\[u = -K_2 s_2 - f + u_r. \]
Table 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>True value</th>
<th>Nominal value</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_1</td>
<td>Mass of the first link</td>
<td>1.5 kg</td>
<td>1.6 kg</td>
</tr>
<tr>
<td>m_2</td>
<td>Mass of the second link</td>
<td>1.0 kg</td>
<td>0.8 kg</td>
</tr>
<tr>
<td>I_1</td>
<td>Moment of inertia of the first link</td>
<td>0.08 kg m²</td>
<td>0.085 kg m²</td>
</tr>
<tr>
<td>I_2</td>
<td>Moment of inertia of the second link</td>
<td>0.03 kg m²</td>
<td>0.025 kg m²</td>
</tr>
<tr>
<td>l_1</td>
<td>Length of the first link</td>
<td>0.40 m</td>
<td>0.40 m</td>
</tr>
<tr>
<td>l_2</td>
<td>Length of the second link</td>
<td>0.30 m</td>
<td>0.30 m</td>
</tr>
<tr>
<td>l_{bc1}</td>
<td>Distance between base and center of gravity of the first link</td>
<td>0.20 m</td>
<td>0.15 m</td>
</tr>
<tr>
<td>l_{bc2}</td>
<td>Distance between base and center of gravity of the second link</td>
<td>0.20 m</td>
<td>0.25 m</td>
</tr>
</tbody>
</table>

where $K_x \in \mathbb{R}^{n \times n}$ is a design positive definite matrix and $u_e \in \mathbb{R}^n$ is a robust control term to be designed. Thereby, $V_2 = -s_1^T (H + K_1) s_1 + s_1^T e_3 - s_2^T K s_2 + s_2^T (u_r + \delta f)$. (38)

Step 3 (low-pass-filtering dynamics). The low-pass-filtering error satisfies

$\dot{e}_3 = -T^{-1} e_3 - \ddot{q}_d + \eta (e_1, e_2, e_3, t)$. (39)

where

$\eta (e_1, e_2, e_3, t) := \left(\lambda 2 I + \frac{\partial \psi (e_1)}{\partial e_1} \right) \psi(e_1) - \left(\lambda I + \frac{\partial \psi (e_1)}{\partial e_1} \right) \dot{\psi}(e_1) + \left(K_1 + \frac{\partial \psi (e_1)}{\partial e_1} \right) (-K_1 e_1 - K_1 \dot{\psi}(e_1, t) + e_2 + e_3)$. (40)

We consider the candidate Lyapunov function

$V_3 = V_2 + \frac{e_3^T e_3}{2}$. (41)

According to (38) and (39), the time derivative of V_2 satisfies the inequality

$\dot{V}_2 \leq -s_1^T (H + K_1) s_1 + s_1^T e_3 - s_2^T K s_2 + s_2^T (u_r + \delta f) - e_3^T T^{-1} e_3 - e_3^T \ddot{q}_d + e_3^T \eta (e_1, e_2, e_3, t)$. (42)

Step 4 (NN approximation). Now, we use NN approximation to compensate for the uncertain term, δf. In this regard, we assume that $(q, \dot{q}, \ddot{q}) \in \Omega$ with $\Omega \subset \mathbb{R}^{2n}$ being a compact set. To ensure the feasibility of the tracking control problem [2], we further assume that $\dot{q} \in \Omega$, that is, $\Omega_d \subseteq \Omega$.

Assumption 3. The desired trajectory $q_d(\cdot)$ is feasible in the set Ω, and the candidate Lyapunov function $V_4 = V_3 + \frac{1}{2} \dot{\theta}^T \Gamma^{-1} \dot{\theta}$. (50)

where $\Gamma \in \mathbb{R}^{n \times n}$ is a positive definite matrix. Applying the NN approximation (49) and using the nonlinear damping, we set the robust control input to

$u_r = -\left(\frac{\dot{\theta}^T \dot{\phi}(\chi) + \kappa}{2 \epsilon} \right) s_2$. (51)

where $\kappa \geq \dot{\zeta}$ is a design positive. Thereby, we have

$\dot{V}_4 \leq -s_1^T (H + K_1) s_1 + s_1^T e_3 - s_2^T K s_2 + \left(\frac{\dot{\theta} - \theta^*}{2} \right) s_2^T s_2 - e_3^T T^{-1} e_3 - e_3^T \ddot{q}_d + e_3^T \eta (e_1, e_2, e_3, t) + \frac{\epsilon}{2} + \dot{\theta}^T \left(\frac{\dot{\phi}(\chi)}{2 \epsilon} \right) \| s_2 \|^2 + \Gamma^{-1} \dot{\theta}$. (52)

According to the last term in the right hand side of (52), we select the NN update law as

$\dot{\theta} = \Gamma \left(\frac{\dot{\phi}(\chi)}{2 \epsilon} \right) \| s_2 \|^2 - \gamma \dot{\theta}$. (53)

where γ is a design positive.

Step 5 (stability of the error dynamics). In the next theorem, we state the main results regarding the semiglobal stability of the error dynamics. We note that, according to the proof of Proposition 1, $(q, \dot{q}, \ddot{q}) \in \Omega \times \Omega_d$ implies that $(e_1, e_2, e_3) \in \Omega$.
Table 2
Statistical properties of tracking errors.

<table>
<thead>
<tr>
<th>Error signal</th>
<th>Conventional DSC</th>
<th>Proposed DSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>q̇1 - q̇d</td>
<td>-0.0302</td>
<td>0.0012</td>
</tr>
<tr>
<td>q̇2 - q̇d</td>
<td>0.0379</td>
<td>0.0017</td>
</tr>
</tbody>
</table>

Assumptions 1 and 2 hold true. Let \((q, q̇) \in \Omega\) with \(\Omega \subseteq \mathbb{R}^{2n}\) being any compact set satisfying Assumption 3. In the \((s_1, s_2, s_3)\) space, let \(\Omega_2 \subseteq \mathbb{R}^3\) be the compact set corresponding to \(\Omega \times \Omega_2\). Let \(\Omega_3 \subseteq \mathbb{R}^4\) be any compact set such that \(\{t \in \mathbb{R}^4 | \|\theta\| \leq \|\theta^*\|\} \subseteq \Omega_3\). Then, all trajectories \((s_1(t), s_2(t), s_3(t), \theta(t))\), \(t \in \mathbb{R}^+\), that start in \(\Omega_2 \times \Omega_3\) are bounded and ultimately bounded.

Proof. By Remarks 1 and 3, \(\eta(.)(.)\) is upper bounded by a continuous function and there exists a positive \(\eta_0\) such that \(\|\eta(e_1, e_2, e_3, t)\| \leq \eta_0\) for all \((e_1, e_2, e_3, t) \in \Omega_2 \times \Omega_3\). As a result, the differential inequality (52) reduces to

\[
V_3 \leq -\lambda (\|s_1\|^2 + \|s_2\|^2 + \|s_3\|^2) - \gamma \|\theta\|^2 + (a_d + \eta_0)(\|s_1\|^2 + \|s_2\|^2 + \|s_3\|^2)^2 + \gamma \|\theta^*\||\theta| + \frac{\epsilon}{2}.
\]
Finally, we have the bounds
\[\|s_1(t)\|^2 + \|s_2(t)\|^2 + \|e_3(t)\|^2 \leq \frac{\sqrt{2 + \lambda^2 r^2 + \lambda_{\min}(\Gamma)\|\theta^*\|^2}}{\min\{1, \lambda_{m}\}},\]
and
\[\|\dot{\theta}(t)\|^2 \leq \frac{2 + \lambda M^2 r^2 + \lambda_{\min}(\Gamma)\|\theta^*\|^2}{\lambda_{\max}(\Gamma)},\]
where \(t \geq t_s, \lambda_{m} := \lambda_{\min}(M(q)), \) and \(\lambda_M := \lambda_{\max}(M(q)) \) over \(\Omega.\]

Remark 6. A notable feature of the DSC controller is that it does not require the acceleration of the desired trajectory, \(\dot{\theta}^*.\) This is because of the low-pass-filter (24d) that removes the need for differentiating the auxiliary control input, \(\psi.\)

5. Tracking error convergence

In Section 4, we designed a dynamic surface controller and established its stability. Now, we further investigate the convergence of the tracking error using the continuous TSM. According to (25a), the dynamics of the tracking error is governed by
\[\dot{e}_1 = -\psi(e_1) + \sigma(e_2, e_3),\]
for small initial conditions. We assume this to be globally asymptotically stable. Therefore, for an arbitrary initial condition \((e_1, e_2, e_3, \dot{\theta}(0))\) the trajectories converge to a neighborhood of the origin.

Please cite this article as: J. Keighobadi, M. Hosseini-Pishrobat and J. Faraji, Adaptive neural dynamic surface control of mechanical systems using integral terminal sliding mode, Neurocomputing, https://doi.org/10.1016/j.neucom.2019.10.046
Proof. Let
\[\sigma(e_1, e_2, e_3, t) := \lambda I(e_1, t) - (H + K_1)s_1 + s_2 + e_3,\]
(63)

Consider the geometric setting of Theorem 1 and assume that its conditions and results hold. There exist parameters of the function \(\psi(.)\) (27) such that any tracking error trajectory \(e_1(.)\), starting in \(\Omega_1\), is ultimately bounded. More specifically, for a transient time \(t_0 \in \mathbb{R}^+\), the inequality
\[
\|e(t)\| \leq \left(\frac{\sum_{i=1}^{3} \delta_n \|e^{n+1}_I\| \epsilon \|L_1\| \|\lambda_{min}(L_1)\| \|\lambda_{min}(L_2)\|}{2(1 - v) \sqrt{\delta_n \delta_n'} \|\lambda_{min}(L_1)\| \|\lambda_{min}(L_2)\|}\right)^{\frac{1}{2}},
\]
(65)
holds for \(t > t_0\) and any number \(0 < v < 1\); \(\delta_n\) and \(\delta_n'\) are defined in Lemmas 2 and 3, respectively.

Proof. Since
\[
\|\sigma(e_1, e_2, e_3, t)\| \leq \|\psi(e_1)\| + \|(H + K_1)s_1\| + \|s_2\| + \|e_3\|,
\]
(66)
there exists a positive \(\epsilon_0\) such that \(\|\sigma(e_1, e_2, e_3, t)\| \leq \epsilon_0\) over \(\Omega_0 \times \mathbb{R}^+\). Considering the positive definite function \(V = \frac{1}{2}e_1^2\), differentiating it with respect to time, and using Lemma 3, we get
\[
\dot{V} \leq -\delta_n \lambda_{min}(L_1) \|e_1\|^n + \delta_n' \lambda_{min}(L_2) \|e_1\|^{n+1} - \delta_n' \lambda_{min}(L_3) \|e_1\|^{n+1} + \epsilon,
\]
(67)
where
\[
\epsilon := \sum_{i=1}^{3} \delta_n \|e_i\| \epsilon \|L_i\| \|\lambda_{min}(L_i)\| \|\lambda_{min}(L_i)\|.
\]
(68)
Assume that
\[
\delta_n' \lambda_{min}(L_2) \geq \epsilon_0,
\]
and consider the following set for \(0 < v < 1\):
\[
\Omega_v := \{e_1 \in \mathbb{R}^n \mid \delta_n' \lambda_{min}(L_1) \|e_1\|^n \leq \epsilon \delta_n' \lambda_{min}(L_2) \|e_1\|^n + \delta_n' \lambda_{min}(L_2) \|e_1\|^{n+1} \leq \epsilon \|1 - v\|\}.
\]
(69)
For \(e_1 \in \Omega_v \setminus \Omega_v\), we have the differential inequality
\[
\dot{V} \leq -\delta_n \lambda_{min}(L_1) \|e_1\|^{n+1} - \delta_n' \lambda_{min}(L_1) \|e_1\|^{n+1} - 2 \delta_n' \lambda_{min}(L_2) \|e_1\|^n + 2 \delta_n' \lambda_{min}(L_2) \|e_1\|^{n+1}.
\]
(70)
According to Lemma 4, \(V(e_1(t))\) decreases monotonically outside the set \(\Omega_v\), until it enters the minimal level set of \(V\) containing \(\Omega_v\). Using the inequality of arithmetic and geometric means, the minimal level set is obtained as
\[
\Omega_{v_{e_1}} := \{e_1 \in \mathbb{R}^n \mid V(e_1) \leq v_{e_1}\},
\]
(71)
where
\[
v_{e_1} := \frac{1}{2} \left(\frac{\epsilon}{2(1 - v) \sqrt{\delta_n \delta_n'} \|\lambda_{min}(L_1)\| \|\lambda_{min}(L_2)\|}\right)^{\frac{1}{2}}.
\]
(72)

Please cite this article as: J. Keighobadi, M. Hosseini-Pishrobat and J. Faraji, Adaptive neural dynamic surface control of mechanical systems using integral terminal sliding mode, Neurocomputing, https://doi.org/10.1016/j.neucom.2019.10.046
Moreover, by Lemma 4, the reaching time to the minimal level set is given by $t_r = t_{\text{min}}$ where

$$ t_{\text{min}} = \frac{2V^{1/2} \widetilde{\lambda}(0)}{\sqrt{2\sin^2 \theta_1 \widetilde{\lambda}_1(L_1) (1 - a_1)}} \times F(1, \frac{1-a_1}{a_2-a_1}; \frac{a_2-2a_1+1}{a_2-a_1}; \frac{2\sin^2 \theta_2 \widetilde{\lambda}_2(L_2)}{\delta_2 \widetilde{\lambda}_1(L_1)} \sqrt{V^{1/2} \widetilde{\lambda}(0)}) $$

Since $V \leq 0$ on the boundary of Ω_{min}^V, the set Ω_{min}^V is positively invariant for the $q_i(t)$ trajectories. This shows that the tracking error trajectories are ultimately bounded and the ultimate bound is $\sqrt{2c_{\text{min}}}$. □

6. Simulation example

6.1. System description

To illustrate the efficacy of the proposed control method, we consider the two-link robot arm depicted in Fig. 1 [14]. The configuration space of the robot is parameterized by the joint angles q_1 and q_2. Through Euler–Lagrange approach, the robot dynamics is obtained as

$$ M(q) = \begin{bmatrix} M_{11} & M_{12} \\ M_{12} & M_{22} \end{bmatrix}, $$

$$(75a)$$

$$ M_{11} = m_1 l_1^2 + m_2 (l_1^2 + l_2^2 + 2l_1l_2 \cos(q_2)) + l_1 + l_2, $$

$$ M_{12} = m_2 l_2^2 + l_1l_2 \cos(q_2) + l_2, $$

$$ M_{22} = m_2 l_2^2 + l_2, $$

$$ C(q, \dot{q}) = -m_2 l_1 l_2 \sin(q_2) \begin{bmatrix} \dot{q}_2 & \dot{q}_1 + \dot{q}_2 \end{bmatrix}, $$

$$ G(q) = \begin{bmatrix} (m_1 l_1 + m_2 l_2) \cos(q_1) + m_2 l_2 \cos(q_1 + q_2) \\ m_2 l_2 \cos(q_1 + q_2) \end{bmatrix}, $$

$$ (75b) $$

$$ (75c) $$

where $\dot{q} = [\dot{q}_1, \dot{q}_2]^T$ and $g = 9.81 \text{m/s}^2$ is the gravitational acceleration. Table 1 gives the definitions and numerical values of the robot arm parameters. The frictional forces, which are assumed to be unknown in the nominal model, are given by

$$ D(\dot{q}) = \frac{1}{2} \begin{bmatrix} \dot{q}_1 + \tanh(q_1) \\ \dot{q}_2 + \tanh(q_2) \end{bmatrix}. $$

$$ (75d) $$

Furthermore, the uncertain term $\Delta(.)$ is assumed to be

$$ \Delta(q, \dot{q}, w) = \begin{bmatrix} \tanh(q_1) \sin(q_1 + q_2) \\ \tanh(q_2) \cos(q_1 + q_2) \end{bmatrix} + w, $$

$$ w = \begin{bmatrix} \cos(\pi t) \sin(t) \\ \sin(2\pi t) \cos(t) \end{bmatrix}. $$

$$ (75e) $$
The initial conditions of the robot dynamics are \(q(0) = \left[\pi/3, \pi/3^3 \right] \) and \(\dot{q}(0) = [-\pi/4, \pi/8]^T \), and the desired trajectory is \(q_d(t) = \frac{1}{2} [1 + \sin(t), -\cos(t)]^T \).

6.2. Controller parameters

We consider the nonlinear function (27) with the parameters \(a_1 = 2, a_2 = \frac{1}{2}, a_3 = 0, \) and \(\varepsilon = 0.1 \). With these parameters, according to the proof of Theorem 2, the hypergeometric function associated with the TSM convergence satisfies

\[
F \left(\frac{1}{2}, \frac{3}{2}; \frac{1}{2}; -z \right) = \frac{\arctan(\sqrt{z})}{\sqrt{z}},
\]

for any \(z > 0 \) (see Section 9.12 of [39]). We select the gain matrices as \(L_1 = \text{diag}(1, 1, 1), L_2 = \text{diag}(1, 1, 1), \) and \(L_3 = \text{diag}(1, 1, 1) \). The exponential rate of the integral term (26) is \(\lambda = 0.1 \). The time constants of the low pass filter (24d) are given by \(T = \text{diag}(0.1, 0.1) \) and the coupling matrix of the integral error surfaces is \(H = \text{diag}(0.1, 0.1, 0.1) \). The DSC gain matrices are selected as \(K_1 = \text{diag}(6, 3) \) and \(K_2 = \text{diag}(1, 1) \).

To approximate the upper bound function \(g(.) \), we consider an RBFNN with \(N = 4 \) hidden neurons. Taking the ranges of the desired signal and its time derivative into account, we consider the coordinates of the centers as

\[
c_i = \left(\frac{1}{2} \left(1 - \frac{1}{1 - \lambda} \right), -\frac{1}{2} \left(1 + \frac{1}{1 - \lambda} \right) \right),
\]

otherwise.

6.3. Simulation results

The control system is simulated in the MATLAB/Simulink environment using the fourth-order Runge-Kutta solver with the time step of 1 ms. To highlight the effect of the proposed integral TSM design, we also consider the conventional DSC (i.e., \(H = 0 \) and \(\psi(.) = 0 \)). The comparative graph of the tracking performance of the controllers is shown in Fig. 2, and Table 2 gives the mean and root mean square (RMS) values of the tracking errors. We observe that the integral DSC exhibits a better tracking response in terms of mean, energy, and steady-state values of the errors. Besides, the integral DSC has a faster convergence as its transient trajectories have more acute slopes compared to the conventional DSC. But, we note that this results in larger overshoots in the transient phase. The trajectories of the integral DSC surfaces (24a)–(24c) and (25a)–(25b) are depicted in Fig. 3. We see that, in agreement with Theorem 1, the error surfaces are both bounded and ultimately bounded. Besides, as per Theorem 2, the integral TSM improves the convergence of \(\varepsilon_1 \) with respect to \(s_1 \). Interestingly, the trajectories of \(s_1 \) resemble those of the conventional DSC. The control torques generated by the controller are shown in Fig. 4. Fig. 5 demonstrates the adaptive function approximation performance of the RBFNN in identifying the upper-bound function, \(g(.) \).

7. Conclusion

We combined the merits of DSC, TSM, and NN function approximation to present a novel control method for mechanical systems. An integral TSM term is introduced into the conventional DSC design. We used RBFNNs with compact supports to adaptively adjust the control gain according to the current magnitude of the disturbances. Comparative simulations showed that the integral DSC outperforms its conventional counterpart in terms of error convergence and robustness. Extending the integral DSC design to more general classes of nonlinear systems is a possible future direction of this research.

Declaration of Competing Interest

The authors declare that they have no known competing interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgment

This research was supported by the University of Tabriz’s plan to increasing research effectiveness under the contract no. s/858.

References
