Magnetic field induced enhanced absorption using a gated graphene/1D photonic crystal hybrid structure: Quantum regime

Arezou Rashidi, Abdolrahman Namdar, Ali Hatef

Faculty of Physics, University of Tabriz, Tabriz, Iran
Nipissing Computational Physics Laboratory (NCPL), Department of Computer Science and Mathematics, Nipissing University, North Bay, ON, P1B 8L7, Canada

ABSTRACT

The terahertz (THz) absorption properties of a gated graphene monolayer placed on top of a one-dimensional photonic crystal is investigated in the presence of a perpendicular magnetostatic bias. The response of electrons to the magnetic field is inspected in the quantum regime, due to the low doping level of graphene grown on the C-terminated surface of silicon-carbide. It has been shown that there is the possibility of achieving enhanced absorption at low magnetic fields for certain states of circular polarization of light. Furthermore, adjusting the gate voltage of the graphene provides another method of tuning absorption in the proposed structure. Therefore, one can obtain enhanced absorption with the appropriate choices of magnetic and electric biases. We believe that these properties make our structure suitable for designing tunable graphene-based THz absorbers.

1. Introduction

The ability to interact strongly with light is a highly desirable property for a material to be used in many photonic applications such as photodetectors, sensors, photovoltaics and absorbers [1–3]. Electromagnetic wave absorbers in the terahertz range (0.1–10 THz) are particularly important for applications ranging from security to medicine [4,5]. Although some semiconductors such as silicon and gallium arsenide can be used for effective optical absorption in the visible wavelength region, low energy spectral regions (THz) currently lack suitable absorbent materials. Therefore, one of the researchers’ challenges is to seek highly absorbent materials in these regions. Graphene, a gapless semiconductor with unique electrical and optical properties, can absorb photons of any energy which makes it an appropriate candidate for use in active optoelectronic devices [6–8]. The absorption of this one-atom-thick material is approximately 50 times greater than gallium arsenide with the same thickness. However, it is not sufficient to be used in optoelectronic applications [9]. Recently, different approaches have been suggested to improve graphene-light interactions. For example, integrating graphene with plasmonic nanostructures [10–12], or nanoparticles [13], multilayer Bragg mirrors [14], photonic crystals [15–19], Photonic quasicrystals [20], patterning doped graphene into a periodic nanodisk [21], etc [22,23]. Here, we utilize graphene grown on a one-dimensional photonic crystal (1DPC) to get enhanced absorption by allowing multiple passes through the monolayer graphene as compared with the absorption of bare graphene. In fact, the advantage of placing graphene on top of a layered structures is the presence of a defect mode within the photonic band gap of the structure, and, therefore the controlling through the flow of light in comparison with Refs. [24,25]. Our main goal is to study the possibility of creating a magneto-tunable enhanced absorption in the proposed structure. Thus, we apply the magnetostatic bias perpendicular to our proposed structure. The influence of varying gate voltage of graphene is also discussed. The outline of this work is organized as follows: The theoretical model and method are presented in Section 2. We use graphene in the quantum regime with the Landau levels (LLs) dependent Kubo conductivity model. In Section 3 the numerical results and discussions are analyzed. The conclusions are also summarized in Section 4. We found that our structure can act as a THz absorber for certain states of circular polarization through the appropriate adjustment of magnetic bias and gate voltage.

2. Theoretical modal and method

The considered structure in this paper has the form G/SiC (A/B)N, where G, A and B represent monolayer graphene, Si and SiO2, respectively (Fig. 1). Here, we consider the Faraday geometry in which the external magnetic field is perpendicular to the structure along the direction of propagation of light (z axis). N denotes the number of periods which is taken as 10. dG = 0.335 nm is the thickness of the single
graphene layer and the other layers have quarter wavelength optical thicknesses with a central wavelength of $\lambda_0 = 700 \mu m$. The relative permittivities, ε, of SiC, A and B are 12.25, 10.89 and 5.06, respectively [26,27]. In order to calculate the absorption spectra in the proposed structure, the 4 by 4 transfer matrix method is used [28]. According to this method, the total transfer matrix of the structure is as follows:

$$ J = [D^{(0)}]^{-1} (S_G S_{SiC}) (S_A S_B)^{j_0} D^{(0)}, $$

where the dynamic matrix in air, $D^{(0)}$, and the characteristic matrix in the jth layer, S_j, are given as

$$ S_j = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} $$

Here, $N_j^\pm = \sqrt{\varepsilon_j}/i \pm i \varepsilon_j$ show the refractive indexes in the jth layer in which indexes $^+$ and $^-$ correspond to the right-handed circularly polarized (RCP) light and left-handed circularly polarized (LCP) light, respectively. Also, ω, c, and d_j represent the angular frequency of light, the light speed in the vacuum and the thickness of the jth layer, respectively. It should be noted that applying the perpendicular magnetic field, B, to the graphene makes it gyrotropic with an asymmetric relative permittivity tensor given as [29]:

$$ G(\varepsilon_{xx} \ v_{xx}, \varepsilon_{yy} \ v_{yy}, \varepsilon_{zz} \ v_{zz}) $$

Here, the matrix elements of permittivity are expressed as $\varepsilon_{xx} = 1 + i \sigma_0/\omega$, $\varepsilon_{yy} = \varepsilon_{xx}$, $\varepsilon_{zz} = 1$, where ε_0 is the vacuum permittivity, and σ_0, σ_H are, respectively, the longitudinal and Hall components of the graphene optical conductivity. In other words, graphene models as an anisotropic biased sheet in which the surface conductivity is a tensor [29,30] compared with conductivities in Refs. [31–33]. Since we consider the graphene layer grown on top of the C-terminated surface of SiC, due to the low doping level in graphene, the Fermi level crosses quantized LLs, and therefore, the quantum modal is used in describing the conductivity as follows [30]:

$$ \sigma_B = \begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \end{bmatrix} $$

Fig. 1. Schematic Faraday geometry of the studied structure, where a monolayer graphene G is prepared on top of a 1DPC. The perpendicular external magnetic field is applied on the structure.

Fig. 2. Absorption of RCP (A+) and LCP (A−) light versus wavelength in the bare graphene for $V_g − V_{zp} = −1.87 B (V)$ at B = 10−4, 1, 3, and 5 T.

Fig. 3. (a) Absorption spectra of the proposed structure as a function of magnetic field for LCP (left panel) and RCP (right panel) light. (b) Absorption peak values (Ap) of LCP and RCP light versus magnetic field. The parameters are the same as those of Fig. 2.
for all + in which a defect mode appears due to the surface VB V can be obtained by − V, in order to match the LL’s energies [36]. We assumed that the voltage-dependent Fermi energies are proportional to $B^1/2$ in order to match the LL’s energies [36]. Thus, $V^f - V^f_{CNP}$ for first three LLs in hole-doped graphene is considered to be -0.02, -1.87. B, and -3.18. B (V). First, we investigate the absorption spectra in a bare monolayer graphene. Fig. 2 shows absorption of RCP and LCP light as a function of wavelength for $V^f - V^f_{CNP} = -1.87$.B (V) at different magnetic fields $B = 10^{-4}$, 1, 3, and 5 T. It is seen that absorption is very low in the limit of vanishing external magnetic field. When the perpendicular magnetic bias is applied, it is still nearly zero for the RCP light. However, the enhanced absorption is achieved for the LCP light, so that its peak values are about 0.24, 0.33 and 0.39 at $B = 1$, 3, and 5 T, respectively. Moreover, the corresponding peak wavelengths appear at 82.4 μm (15.1 meV), 47.75 μm (26 meV), 36.95 (33.6 meV) which indicate the blue-shifting by increasing the magnetic fields. These peaks of absorption are exactly due to the E_{12}^1 and E_{12}^2 intra-band transitions under gate voltage equal to -1.87. B (V) which makes the Fermi level between E_{12}^1 and E_{12}^2 for all magnetic fields. Then, we turn back to our modeled structure. The absorption on the plane of magnetic field and wavelength for LCP light (left panel) and RCP light (right panel) is shown in Fig. 3(a). The other parameters are the same as those of Fig. 2. Similar to the case of bare graphene, different optical responses are revealed for two states of magnetic field and wavelength for LCP light. This figure shows that enhanced absorption is achieved at $1 < B < 2$ T for LCP light. For more clarity, the values of absorption peaks for RCP and LCP light are also illustrated in Fig. 3(b). As the magnetic field increases from 0 to 1.5 T, the LCP light absorption peak increases from nearly 0 to about 0.8. This behavior can open opportunities for magneto-tunability of absorption in THz absorber applications. Especially, the advantage of this absorber is the possibility of enhancement of absorption at low magnetic fields in comparison to the semiclassical regime which is done in our previous work [37]. However, the LCP light absorption peak value decreases beyond 1.5 T. Moreover, an extremely weak absorption around 0.01 is observed for RCP light. Now, we consider $B = 1.5$ T where absorption, reflection and transmittance spectra are sketched in Fig. 4. The other parameters are the same as before. We focus on the band-gap formation range, 60 μm < $\lambda < 80$ μm in which a defect mode appears due to the surface defective G/SiC layers on top of the periodic (A/B)10. One can see that the structure is highly absorptive for LCP light at the position of the

\[a_0 = \frac{e^2 v_f^2 B}{m} \times \sum_{n=0}^{\infty} \left[n_f(M_n) - n_f(M_{n+1}) + n_e(-M_{n+1}) - n_e(-M_n) \right] \times \left(\frac{1}{M_{n+1} - M_n} \right) + (M_n - M_{n+1}) \right]. \]
defect mode (Fig. 4(a)), while it is highly reflective for RCP light. Therefore, this structure can act as an absorber for a certain state of circular polarization of light and as a reflective mirror for another state. Finally, we change the gate voltage of graphene to $-0.02 \cdot B (V)$ and $-3.18 \cdot B (V)$ and investigate magneto-tunability of absorption at these voltages in order to obtain the appropriate electric and magnetic biases needed for enhancement of absorption. The results are shown in Fig. 5(a–d). It can be observed that the RCP light absorption is still much weaker as before. Seeing from Fig. 5(a and b), we found that the LCP light absorption peak value is also low, and the maximum absorption is about 0.38 around 0.25 T. When the gate voltage increases to $-3.18 \cdot B (V)$, which is the case that Fermi energy falls between E_{L2} and E_{L3}, the absorption peak value can be boosted up to 0.90 by tuning the magnetic field between 2 T and 3 T for LCP light. The maximum attainable absorption in this case is about 0.95 at $B = 2.5 \text{T}$ which indicates that our structure is suitable for THz absorber applications. Therefore, appropriate tuning of the gate voltage and magnetic field can lead to the enhancement of absorption for specific states of circular polarization in the proposed structure.

4. Conclusion

In summary, we have theoretically investigated the possibility of enhanced THz absorption via tuning the external magnetostatic bias along with adjusting the gate voltage of nano-layer graphene prepared on top of a 1DPC. Since Graphene is grown on top of a C-terminated surface of SiC, because of the low doping level of graphene, the quantized LLs proportional to $B^{1/2}$ are considered in describing the conductivity of graphene. The results indicate that enhanced absorption is achieved at certain magnetic fields for specific state of circularly polarized light. However, changing the state of circular polarization can make this structure strongly reflective. Therefore, these properties may open opportunities for designing THz circular polarization-selective absorbers based on graphene-PCs.

References

