بهنه بندي خطر زمين لغزش در حوضه آبزير طالقان با استفاده از شاخص آنتروپی شانون

شهرام روستايان 1
داده مختاري كنيکي 2
ژهرا اشرفی فينى 3

چکیده

هدف از تحقیق حاضر اولویت‌بندی عوامل موثر بر وقوع زمین لغزش با استفاده از شاخص آنتروپی شانون و تهیه نقشه خطر پذیری حوضه با استفاده از روش اولویت بندی می باشد. به این منظور با استفاده از تصاویر ماهواره‌ای ASAR و ENVISAT در سال‌های 2003 تا 2009 و با استفاده از نرم‌افزار Arcgis تهیه گردید. لایه‌های اطلاعاتی شامل، بخش تپهه کوه، منطقه مورد مطالعه در محیط نرم افزار Arcgis تمام شده است. در این مطالعه شاخص اولویت بندی (TPI)، شاخص موقتی توده گرایی (ASR)، شاخص حول سطح (SLT)، شاخص رطوبت (TWI)، زمین شناسی، کاربری اراضی، شاخص پوشش گیاهی نرمال (NDVI) شامل، فاصله از کسل، فاصله از رودخانه و فاصله از جاده به عنوان عوامل موثر بر وقوع زمین لغزش شناسایی و نقشه‌های مذکور در محیط سامانه اطلاعات جغرافیایی تهیه و نقشه گردید. احتمال وقوع شاخص آنتروپی شانون نشان داد که نایه‌های جهت شیب دامنه،

1- استاد گروه جغرافیای طبیعی، دانشگاه تبریز، تبریز، ایران
2- دانشجوی دکتری زیست فنولوژی دانشگاه تبریز، تبریز، ایران
3- دانشجوی دکتری زیست فنولوژی دانشگاه تبریز، تبریز، ایران

Email: roostaei@tabrizu.ac.ir-Tel: 09143134410

تاريخ دریافت: 8/2017
تاريخ پذيرش نهایی: 1399/2/11
کاربردی اراضی، ارتقا، شیب، شاخص بوشگی گیاهی نرم‌شده و فاصله از ورودهای بیشترین تاثیر را بر موقعیت لغزش حقوق و عوامل شاخصی رطوبت، زمین‌شناسی و شاخص موقتی توپوگرافی کمترین تاثیر را داشته اند. همچنین تهیه نقشه خطر زمین لغزش با استفاده از مدل آنتروپی و جمع بست آمده است. جزئیات نقشه بیانی خطر زمین لغزش، مناطق GIs نقشه‌های ورودی به مکان خطر زمین لغزش، واقع در شمال شرق برخی مناطق مرکزی و جنوب غرب دارای خطر بسیار کم تا کم می‌باشد. حالیکه بیشتر مناطق مورد مطالعه دارای خطر متوسط تا بسیار زیاد می‌باشد.

واژگان کلیدی: خطر زمین لغزش، شاخص آنتروپی شاکن، سامانه اطلاعات جغرافیایی، حوضه طاقان

مقدمه

زمین لغزش یکی از فرآیندهای زنده‌میرایی اصلی تأثیرگذار بر چشم‌انداز تکاملی در مناطق کوهستانی به شمار می‌رود که باعث حوادث فاجعه‌باری شده است. (هائفانی و مریاکی ۱، ۲۰۰۹: ۳۰۵۰) طبق مطالعات انجام شده، زمین لغزش به تنها ۴۷ درصد از پدیده‌های طبیعی جهان را به خود اختصاص داده است (کوهوهست ۲ و همکاران ۲۰۰۵: ۶). بنابراین جهانی مخاطرات طبیعی ۳ در سال ۲۰۱۲ لغزش در میان هفته پدیده طبیعی خطرناک جهان قرار گرفت. (فتحی و همکاران ۲۰۱۵: ۶۱۶-۶۲۱). امروزه نیز زمان‌بندی برای مدیریت خطر زمین لغزش به صورت کمی و پیش‌بینی آن وجود دارد (فلیپ و همکاران ۲۰۰۸: ۱۶۵). به‌طور کلی، وقوع خطر زمین لغزش، ابزاری اساسی برای پیشگیری از خیانت کوهستانی است (کوهوهست ۲۰۰۸: ۲۴۴). نظر به اهمیت موضوع، شاخص عوامل مهم در در وقوع زمین لغزش و مناطق مورد خطر امری ضروری به نظر می‌رسد. آنتروپی به معنای کمیتی از بی‌نظمی بین علل، نتایج با تصمیم‌گیری‌ها در موضوعات مختلف می‌باشد و به ویژه در مطالعات

۱- Hattanjii & Moriwaki
۲- Koehorst
۳- Global organization of natural dangers.
۴- Fathietal.
۵- Felletal.
۶- Kumar Dahal
زئو‌پورالولی نظر زمین لغزش که داده‌های موجود به عدم قطعیت‌ها در روبو هستند و می‌تواند کار آبی بازی داشته باشد (وان و همکاران، 2009: 1238). آنتروپی افزون بر تعیین کمیت انرژی کیفیت انرژی را نیز اندیشگرگری می‌گردد و این کیفیت، اندیشه‌گری به نظم در یک سیستم است (منزلی و همکاران، 2008: 145). این و رطوبه و مطالعه‌های مختلف با استفاده از تئوری آنتروپی شانون در بحث زمین لغزش صورت گرفته که عبارتند از: به منظور مدل‌سازی مکانی زمین لغزش در شهر چین از چهار مدل موجود تابع‌های بهینه، نسبت فراوانی، ماکزیمم آنتروپی و رگرسیون لجستیک استفاده نمودند. نتایج حساب سنگی مدل نشان داد که مدل رگرسیون لجستیک با سطح زیر منحنی ۸۲/۴۸ بالاترین دقت را داشته است(هنگ و همکاران، 201۶: ۱۱۲). به منظور تهیه نقشه حساسیت زمین لغزش از مدل‌های مثبت فراوانی و توزین واقع، شاخه آنتروپی و دمای‌تر، شرایط استفاده شده است، بنابراین بهترین جایگر استفاده از مدل‌های ترکیبی فیزیکی و ماکزیمم آنتروپی به شدت و نتایج هاکی از این است که نقشه شاخه پایدار در زمان، جریان سنگ، سنگ شاخص، فاصله از رودخانه، فاصله از جاده، فاصله از گسل، شاخه توان اثرات و شاخه حمل رسوی و شاخه رطوبه توبه‌رفتی با به‌عنوان عوامل مؤثر در لغزش بکار گرفته شد. نتایج این سنتی‌رسی نقشه خط خطر به وسیله منحنی ROC نشان داد که نقشه حساسیت شانه با استفاده از شاخه آنتروپی ۹۱/۶ درصد دارای دقت بالایی است (دوکوتا و همکاران، 20۱۳: ۱۳۷۹) ارزیابی مدل آنتروپی در بهتره‌بندی رخداد زمین لغزش در تقویس نیاز واقع در ژاپن شمال غربی در

1- Wan et al.
2- Minasny et al.
3- Hong
4- Yousef
5- Davisand Blesius
6- Devkota
سال ۱۳۹۱ انجام شد و نتایج حاصل از این پژوهش نشان داد که مدل آنتروپی کارایی مطلوبی در بهبود یافته‌رخند زمین‌لغزش در داد و ارتقاء و شیب و لیتولوژی به ترتیب بیشترین نقش را در رخند زمین‌لغزش دارندامیقی و همکاران، ۱۳۹۱: ۷۸۷۹. یاکسل سنجی خطر زمین‌لغزش با استفاده از مدل آنتروپی در منطقه‌های شیرین‌نامه استان کرمانشاه پربرسی و نتایج نشان داد که عوامل قابل‌توجهی از گسل، شیب، ارتقاء، لیتولوژی و جهت شیب به ترتیب بیشترین تأثیر را در وقوع زمین‌لغزش در منطقه داشته است(محمدخان و همکاران، ۱۳۹۳: ۹۸۰). منطقه طالقان از جمله مناطقی است که به شدت نوع لیتولوژی زمین، شبکه دامنه‌ای نسبتاً بارندگی و رطوبت فراوان مستعد زمین‌لغزش می‌باشد. این نتایج هدف‌های تحقیق حاضر اولویت بندی عوامل موثر بر زمین‌لغزش و پهنه بندی حساسیت آن با استفاده از شاخص آنتروپی شانون در نظر گرفتن طالقان این می‌باشد.

موقعیت حوضه طالقان

حوضه طالقان که یکی از زیرحوضه‌های مهم حوضه آبریز سفرود به شمار می‌رود، در دامنه جنوبی رشته کوه‌های البرز و در بخش شمال غربی در فاصله ۵۰ کیلومتری از شهر تهران واقع شده است. این حوضه از شمال به حوضه آبریز نجف‌شهر، از جنوب به صفحه توپک و ارتفاع به پلاک ۵۸۵ متری است. در دریاچه مساحت طالقان ۸۳۰ متر مربع است. این سطح در سطح دریا ۱۳۶۰ متر است. این حوضه در حدود ۵۸۷/۱۹ کیلومتری مریب است و به دلیل توجه داشته که محصولات مطالعاتی در این طرح فقط شامل حوضه آبریز سد طالقان است. ارتقاء حوضه از سطح دریا ۱۳۴۰ تا ۱۳۴۵ متر متوسط است. سرود خانه طالقان در مرکز این حوضه از گره‌های عسلی در غرب کنوان سر جنوبی می‌گردد و به سمت غرب در جریان است. این رود خانه پس از دریاچه شاخه‌های پر اب‌مند روستاهای جنوبی چنین روستا و روستای چندین کیلومتر به روستاهای می‌پیوندد و پس از آن با نام رود طالقان سرچشمه به دریاچه سد سفید رود می‌رود. دسترسی به دره طالقان و منطقه طرح با طلای کرتین سیستم آتوپان کرج به طور قبیل وارد شد که جایگاه انجیرافی و اختصاصی طالقان که ۳ کیلومتر بعد از اینک واقع شده.
است- و پس از طی ۲۸ کیلومتر از کناره اتوبان و عبور از فراز گردنه ابراهیم آباد مقدور می‌باشد.

مواد و روش‌ها
این پژوهش به لحاظ هدف، کاربردی و به لحاظ روش، تحلیلی است در این پژوهش با استفاده از یازده‌های صحرایی ۱۷ پهنه لنزه‌ای شناسایی و نقشه پراکنش زمین لنزه‌های جویسه تپه گردید (نقشه شماره۱). لایه‌های اطلاعاتی درجه شیب، جهت شیب، طبقه ارتفاعی، لیتوژی، کاربری اراضی، فاصله از روی، فاصله از ابراهیم، فاصله از جاده، شاخص توان ابراهیم (Strema power index)، شاخص رطوبت (digital elevation model) و شاخص (surface area ratio) نسبت سطح (NDVI) به عنوان عامل مؤثر بر بیوپوشش لغزش شناسایی و نقشه‌های مذکور در محیط سامانه اطلاعات مکانیک رقومی می‌گردد. به این منظور با استفاده از نقشه توبوگرافی در مقياس ۱۰۰۰۰: ۱، نقشه مدل رقومی ارتفاعی تپه و عوامل درجه شیب، جهت شیب، طبقه ارتفاعی، نسبت (Digital elevation model)

مساحت سطح (رابطه ۱)، شاخص رطوبت (رابطه ۲) شاخص توان ابراهیم (رابطه ۳) و شاخص وضعیت توبوگرافی از آن استخراج گردید (شکل شماره ۲). لایه‌های اطلاعاتی کاربردی اراضی و شاخص گیاهی تفاصلی نمایش داده از روی تصاویر ماهواره‌ای با توان تک‌پک ۳۰ متر ایجاد گردید نقشه زمین شناسی حوضه تپه نیز بهره برگرفته‌اند.

SHAPE افزار Arc GIS لایه‌های لیتوژی و حريم فاصله تاگلی از آن استخراج گردید. لایه‌های مربوط به ابراهیم و جاده‌ها و کاربری نیز از نقشه توبوگرافی منطقه مورد مطالعه تهیه گردید.

RaBeTe ۱

\[
SAR = \left(\frac{S}{A_S} \right)
\]

RaBeTe ۲

\[
TWI = \ln \left(\frac{A_S}{\tan \beta} \right)
\]

RaBeTe ۳

\[
STI = \left[\frac{A_S}{2213} \right]^{0.6} \frac{\sin \beta}{0.0896}
\]
Shaheer Ali Jaffar and Zarineh Mirzazadeh

Adapted Universal Soil Loss Equation

Length Andslope = Adapted Universal Soil Loss Equation

β

where: As = S

1. Moore
2. Yufeng
3. Shanoon
4. Ramakrishna
5. Sharma
6. Constantin

References:

1. Moore
2. Yufeng
3. Shanoon
4. Ramakrishna
5. Sharma
6. Constantin
به‌نام بندی خطر زمین لغزش در حوزه ابرین طلاقان با استفاده از ناحیه آنتروپی شانون

\[
(P_{ij}) = \begin{bmatrix}
P_{ij} \\
\sum_{j=1}^{SJ} P_{ij}
\end{bmatrix}
\]

رابطه (4)

\[
(H_j) = \sum_{j=1}^{SJ} P_{ij} \log_2(P_{ij}), j = 1,...,0,n
\]

رابطه (5)

\[
H_{\text{max}} = \log_2 sj, sj - \text{numberofclasses}
\]

رابطه (6)

\[
I_j = \frac{H_{\text{max}} - H_j}{H_{\text{max}}} = 1 \text{ (0.1)}, j = 1,...,n
\]

رابطه (7)

\[
W_j = I_{pj}ij
\]

رابطه (8)

ضریب ثابت ابت و از رابطه (9) به دست می‌آید (در این رابطه m عدد زمین لغزش‌ها K است):

\[
k = (\text{Lnm})^{-1}
\]

رابطه (9)

که در آن: \(p_{ij} \): تراکم لغزش حس طبقه \(p_{ij} \) مقدار انتروپی و مکرر انتروپی، \(j \) ضریب اطلاعات و \(W_j \) مربوط به آن، \(h_{\text{max}} \) و \(h_j \) وزن نهایی هر عامل. بعد از تغییر وزن نهایی هر عامل و ضریب آن در کلاس‌های عامل مذکور مقدارهای \(p_{ij} \) مربوط به هر عامل و کلاس‌های آن. نوشتارهای وزنی با هم جمع شده وزن پیشتری به خود اختصاص می‌دهد.

بس از محاسبه وزن کل \(W_j \) به‌نام بندی خطر زمین لغزش در حوزه ابرین طلاقان با استفاده از رابطه 10 از این‌ها استفاده شده.

\[
H_i = \sum_{j=1}^{n} w_j r_{ij}
\]

رابطه (10)
در این رابطه $H_i \text{ وزن} W_j$ وزن نهایی تمام عوامل و $W_j \text{ وزن} W_i$ رابطه از عوامل است (زونگچی و همکاران، ۱۳۳۶، ۱۳۳۶: این رابطه مدل نایجیری میزبان خطر زمین لغزش در منطقه مطالعاتی است.

شکل (1) پراکنش لغزش‌های شناسایی شده در حوضه طالقان

-Zongji
شکل (2) نقشه طبقات شیب در حوضه طالقان

شکل (3) نقشه جهات شیب در حوضه طالقان
شکل (4) نقشه طبقات ارتفاعی در جهان طلایی

شکل (5) نقشه سازندگی زمین شناسی
شکل (8) نقشه فاصله از گسل در حوضه طالقان

شکل (9) نقشه فاصله از رودخانه حوضه طالقان
شکل (10) نقشه فاصله از جاده حوضه طالقان

شکل (11) نقشه نسبت مساحت سطح در حوضه طالقان
شکل (۱۲) نقشه شاخص طول نیب حوضه طالقان

شکل (۱۳) نقشه موقعیت توبوگرافی حوضه طالقان
نتایج حاصل از ارتباط بین زمین لغزش، عوامل موتر و میزان اثر هریک از آنها با استفاده از شاخص آنتروپی شانون در جدول 1 ارائه شده است. نتایج بررسی عوامل به کار گرفته شده در این تحقیق حاکی از آن است که بیشترین لغزش‌های منطقه در کلاس شیب ۱۵٪ و مقدار عامل تغییرات سطحی سطحی (TPI) بیشتر از مقدار محدود (Pij) و شرایط وقوع زمین لغزش فراهم نمی‌شود، در شیب‌های زیاد بالاتر از ۴۰درجه فرانسه‌ای در سطح دیگر غالب بوده و خاک کافی برای وقوع زمین لغزش تحت این شرایط وجود ندارد. برسی عوامل دیگر نشان داده که بیشترین وزن لغزش با مقدار (Pij) به ترتیب به کلاس‌های جهت شمال غربی با تعداد ۱۴۲ مورد لغزش، کلاس ارتفاعی ۲۵۰-۳۰۰،۰۰۰ (۶۱ لغزش)، عامل نسبت سطح در طبقه ۱-۲ (۵۵۳ تغییرات لغزش)، و عامل TPI در طبقه ۲-۳ (۱۸۶ لغزش)، TPI در طبقه ۴-۵ (۲۸ لغزش) و با تغییرات ارتفاعی TPI در طبقه ۵-۲ (۱۳۱ لغزش) در طبقه ۶-۷ (۲۸ لغزش) باعث شافیت شدند.
طول شیب ALS در طبقه 5 (238 / لنزش)، عامل لیتولوژی در سنگ‌های نسبتاً نفوذ‌پذیر (329 / لنزش)، عامل کاربری مرتعی (527 / لنزش)، طبقه 5، 6/10، از 258 (و لنزش)، فاصله 600-800 متری از کرسل (638 / لنزش)، فاصله 750-1000 متری از رودخانه (727 / لنزش)، فاصله 1000-2000 متری از جاده (198 / لنزش) تعقیب داد.

جدول (1): میزان اختصاص یافته عوامل موثر در لنزش

<table>
<thead>
<tr>
<th>عامل</th>
<th>طبقه</th>
<th>تعداد لنزش</th>
<th>انتخاب لنزش</th>
<th>علامت</th>
<th>انتخاب لنزش</th>
<th>تعداد لنزش</th>
<th>فاصله</th>
<th>علامت</th>
<th>انتخاب لنزش</th>
<th>تعداد لنزش</th>
</tr>
</thead>
<tbody>
<tr>
<td>شیب</td>
<td>3</td>
<td>33</td>
<td>30</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>رنگ</td>
<td>5</td>
<td>44</td>
<td>44</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>تمیز</td>
<td>6</td>
<td>57</td>
<td>57</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>جفت</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>جواب</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>روش</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

نحوه ی عوامل موثر در لنزش

نتیجه‌گیری علمی جغرافیا و برنامه‌ریزی، نسخه 1، 71
<table>
<thead>
<tr>
<th>عامل</th>
<th>طبقه</th>
<th>آمار تعداد</th>
<th>امتیاز اختصاص یافته</th>
<th>عامل</th>
<th>طبقه</th>
<th>آمار تعداد</th>
<th>امتیاز اختصاص یافته</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>25 - 50</td>
<td>3</td>
<td></td>
<td></td>
<td>25 - 50</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 - 75</td>
<td>4</td>
<td></td>
<td></td>
<td>50 - 75</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75 - 100</td>
<td>5</td>
<td></td>
<td></td>
<td>75 - 100</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 100</td>
<td>6</td>
<td></td>
<td></td>
<td>> 100</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 - 50</td>
<td>3</td>
<td></td>
<td></td>
<td>25 - 50</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 - 75</td>
<td>4</td>
<td></td>
<td></td>
<td>50 - 75</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75 - 100</td>
<td>5</td>
<td></td>
<td></td>
<td>75 - 100</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 100</td>
<td>6</td>
<td></td>
<td></td>
<td>> 100</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 - 50</td>
<td>3</td>
<td></td>
<td></td>
<td>25 - 50</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 - 75</td>
<td>4</td>
<td></td>
<td></td>
<td>50 - 75</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75 - 100</td>
<td>5</td>
<td></td>
<td></td>
<td>75 - 100</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 100</td>
<td>6</td>
<td></td>
<td></td>
<td>> 100</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>شناسه</th>
<th>نیروگراف</th>
<th>TPI</th>
<th>دیواره</th>
<th>ضخامت طلا</th>
<th>پوست‌های</th>
<th>شاخه‌ای</th>
<th>گردو اکس</th>
<th>خلاصه</th>
<th>سکه</th>
<th>شناخت</th>
<th>علی‌شیب</th>
<th>Als</th>
<th>خلاصه</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb-1</td>
<td>553</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>104</td>
<td>193</td>
<td>26</td>
<td>100</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Mar-1</td>
<td>756</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>104</td>
<td>193</td>
<td>26</td>
<td>100</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>May-1</td>
<td>256</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>104</td>
<td>193</td>
<td>26</td>
<td>100</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>شناسه</th>
<th>نیروگراف</th>
<th>TPI</th>
<th>دیواره</th>
<th>ضخامت طلا</th>
<th>پوست‌های</th>
<th>شاخه‌ای</th>
<th>گردو اکس</th>
<th>خلاصه</th>
<th>سکه</th>
<th>شناخت</th>
<th>علی‌شیب</th>
<th>Als</th>
<th>خلاصه</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb-2</td>
<td>153</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>104</td>
<td>193</td>
<td>26</td>
<td>100</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Mar-2</td>
<td>456</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>104</td>
<td>193</td>
<td>26</td>
<td>100</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>May-2</td>
<td>106</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>104</td>
<td>193</td>
<td>26</td>
<td>100</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>
در این پژوهش از امتیاز دو قطعی برای رتبه‌بندی شاخص‌های امکان و خدمات ارائه و امتیاز‌دهی گیری در این روش براساس یک مقدار از نقطه ابتدا به طوری که صفر مشخص کننده کمترین ارزش ممکن که عملی قابل درک باشد و دو نشان دهنده حداکثر ارزش ممکن از شاخص موردینظیر است نقطه وسط نیز نقطه شکست مقياس بین مساعدة و نامساعد‌هایش (اصغریور، 1391، ص 195).

در مرحله بعد با استفاده از امتیاز‌های اختصاصی یافته در جدول شماره ۱ و تبدیل معیارها به عدد صحیح و تشکیل ماتریس اولیه (جدول ۲) مقادیر (Pij) با استفاده از رابطه (۲) مقدار و وزن نهایی از رابطه (۸) و همچنین مقدار (K) با رابطه (۹) بدست آمد و برای محاسبه مقادیر (Br) برای هر عامل با استفاده از رابطه (۵) استفاده شد. تأثیر این محاسبات در جدول شماره ۱ ارائه شده است.

جدول (۳) مقداری شاخص‌های محاسبه شده عوامل موثر در افزایش با استفاده از انرژی
بر اساس محسابت‌های فوق با دلیل انتروپی در بین 13 لایه اطلاعاتی فوق لایه چهت شیب
دامنه، کاربری اراضی ارتفاع شیب، تراکم پوشش گیاهی و فاصله از رودخانه به ترتیب
پیش‌ترین سهم را در منابع عوامل مختلف پوشش به خود اختصاص داده اند از نظر رفتار، تقریبا
انواع مختلف رفتارهای حرکتی در وقوع زمین لغزش‌های ان منطقه مشاهده می‌گردد. حضور
بخش‌های مختلف در ارتفاعات و سریال‌های آب‌ریزه‌ها باعث شده که این‌ها سطحی
فسایش یافته، به تدریج با ذوب برف و حرفک آن به سمت پایین و تحت تأثیر مکانیکی به
به صورت تدریجی و آرام به همراه برف به حرفک در ادامه و پدیده لغزش به وجد می‌آید.
گسل خوردوگی در مناطق مختلف به ویژه در نقاط مرتفع ارتفاعات جنوبی حوضه، باعث ایجاد
تعداد مثبت زمین لغزش با ویژگی‌های رفتاری متغیر و گاهی پیچیده در طول منطقه کرد
شده گردیده است با پروپی نشان دهنده جهت شیب در حوضه مشخصی گردید که جهت شیب
جنوبی و متمایل به جنوب در حوضه طالقان نقش کمتری در وقوع زمین لغزش در منطقه
دارند. در حالی این مسئله را می‌توان در دریافت پیش‌تر برای این منطقه آنچه به کمتر
کمتر بودن میزان رطوبت و آب درون توده حاکی در این موقعی در مقایسه با ووجه شمالی و
متمایل به شمال عناوین نمود. همچنین پرسر نشان شیب حوضه و شیب پنهانی لغزشی
پیانگر این امر است که پیش‌تر ناب اینها در شیب‌های بالایی ۲۰ درجه رخ داده است که پیش‌
حاکی از این امر است که در به‌های محکم (افقي) پیش‌تر از اثرهای مقاوم (عمودی) است
یاباری ناچیز در دامنه در این شیب‌ها پیش‌تر می‌باشد. در رابطه با شیب‌های گیاهی
تفاصلی نرم‌بال شده که این نکته ضروری است که کمیته و مشترکه مقاومت از ۱۹۸۰ تا ۱۹۹۰
منجر به و مناطق پیش‌تر گیاهی تک و بیشتر و خاک لخت، پیش‌ترین احتمال رخداد
لغزش و مناطق با پوشش گیاهی متراکم و گستردگی کمترش در اثرهای مختلف از ۱۹۸۰ تا ۱۹۹۰
دارند. میزان نقش هرکدام از سطوح لایه فاصله از ابر‌ها در وقوع زمین لغزش منطقه نشان
می‌دهد که فاصله پیش‌تر از آب‌ریزه‌ها به میزان کمتر شدن میزان وقوع زمین لغزش در منطقه
است. این این می‌تواند با معنا نقش زیاد عامل زیر بودن در وقوع زمین لغزش در حوضه
طالقان تلقی گردد.
در نهایت مدل ناحیه‌ای خطر زمین لغزش در حوضه طالقان با استفاده از رابطه (۹) به صورت زیر به دست آمد:

\[H = \left(S \times 1 \times 10 \right) + \left(\frac{As \times 1}{19} \right) + \left(\frac{H \times 10}{1 \times 19} \right) + \left(\frac{La \times 1}{37} \right) + \left(\frac{N \times 1}{12} \right) + \left(\frac{Ri \times 1}{12} \right) \]

در این رابطه،‌:\[\times \]کاربری اراضی، N:شناخت بوش، H:ارتفاع، La:جهت شیب، As:گهیه، Ri:فواصل از رودخانه.

به منظور پهن‌پایی بندی حساسیت زمین لغزش از شش فاکتور فوق که بیشترین وزن‌ها را داشته اند استفاده گردید. بدين صورت که بعد از تعیین وزن تهیه‌های هر عامل و ضریب ان در کلاس‌های عامل مذکور تقسیم‌های وزنی با هم جمع شده و نتیجه‌های حساسیت زمین لغزش به دست آمد. سپس تقسیم موارد مذکور بر اساس شکستگی‌های بین طبقه‌های کلاس‌های فاقد خطر پذیری، خطر پذیری کم، خطر پذیری متوسط، خطر پذیری زیاد، خطر پذیری خیلی زیاد تقسیم شدند. در دسته‌بندی گردید (شامل شماره ۱۵) نتایج به دست‌آمده خطر زمین لغزش در شکل ۱۴ شناس داده است که به ترتیب ۱۴/۶۷/۴۹/۲۱/۲۰ و ۱۴/۲۵ درصد از منطقه مورد مطالعه در طبقه فاقد خطر پذیری، خطر پذیری کم، خطر پذیری متوسط، خطر پذیری زیاد، خطر پذیری خیلی زیاد قرار گرفته است. نتایج نشان می‌دهد واقع در شمال شرق و پرای خاک‌های مرکزی و جنوب غرب خواری خطر سیاس بسیار است. به منظور ارزیابی دقیق‌تر باید قرار دادن موضوعات زمین لغزش‌ها که به روی تحقیق پهن‌پایی بندی تهیه شده مشخص گردید که از ۱۷٪ به تغییر انواع در حوضه تمامی بهره‌های در بهره خطر پذیری زیاد تا خیلی زیاد قرار گرفته اند. ساختمان بهره‌های خطر زمین لغزش در منطقه مورد مطالعه جایی از آسیب پذیری بالایی منطقه در بالای منطقه زمین لغزش است. بررسی‌های صورت گرفت بر روی منطق طرح در ساختن هنر گیرنده‌های حداکثر به منطقه مسکونی، جاده‌ها، رودخانه‌ها، دریاچه‌های طالقان و سد مخزنی طالقان است. عناصر و اجزا کاربری‌های مختلف که در منطقه وجود دارد از ابعاد مختلف دارای اهمیت های متغیری هستند. به‌دنبال این است که انسان و دارایی‌های اجزا در صورت بروز هرگونه خطری، از اولویت بالاتری برخوردار هستند. بدين ترتيب، مناطق مسکونی و جمعيتي بالاترين ميزان اولويت
قرار می‌گیرند. اما مواردی نیز وجود دارد که در صورت قرار گرفتن در خط زمین لغزش، خود می‌توانند خطر بالقوه بزرگتری را ایجاد نمایند. درباره طاقانه و سد مروبطه می‌توانند ازجمله این عوامل باشند. صورت وقوع زمین لغزش در دریاچه، امکان از بین رفتن سد و رها شدن آب موجود آن به سمت پایین دست، خطر به مراتب بزرگتری را، در مقایسه با وقوع زمین لغزش، می‌تواند ایجاد نماید. بر اساس نشان دهنده بهینه بندی خطر حوضه طاقانه کمترین میزان خطر پذیری مرکب به روودخانه و جاده می‌باشد. و رونق‌ها و دریاچه طاقانه سد مخزنه طاقانه از خطر پذیری بالایی برخوردار می‌باشند.

نتیجه‌گیری

تهمه نقشه حساسیت زمین لغزش، بیش زمینه ای در شناخت عوامل مؤثر بر وقوع زمین لغزش، رخداد آن، مدیریت خطر و روش‌های پیشگیری از خطر و ریسک ایست. هدف از تحقیق حاضر اولویت بندی عوامل مؤثر بر وقوع زمین لغزش و بهره‌بردهشدن آن در حوضه طاقانه با استفاده از شاخص آتروپی شانون است. پس از تهیه نقشه پرکش زمین لغزش
ها، نامه‌های اطلاعاتی شیب، جهت شیب، طبقه ارتقاء، لیتوژی، کاربری اراضی، فاصله ارجاء، فاصله از گسل، فاصله از آب‌ارز، شاخص طول شیب، شاخص رطوبت، شاخص گیاهی نرمال شده، نسبت همبستگی سطح وشاخه وضعیت توبوگرافی به عوامل مؤثر بر وقوع زمین لرزه در منطقه مورد مطالعه انتخاب گردیدند. اولویت بندی عوامل مؤثر با استفاده از شاخص انرژی شاتون نشان داد که نامه‌های جهت شیب، کاربری اراضی، ارتقاء، شیب، و شاخص پوشش گیاهی تعابی نرمال شده و فاصله از رودخانه پیشین تأثیر را بر وقوع زمین لرزه منطقه داشته است و عوامل وضعیت توبوگرافی، شاخص رطوبت، زمین شناسی، فاصله از گسل و جاده و بقیه نامه‌های اطلاعاتی کمترین تأثیر را داشته. نشانه حذف یک عامل می‌دهد که تمام این عوامل از شمال شرقی و جنوب غربی درای خطر سیار کم تا کم می‌باشند. در حالیکه بهترین منطقه مورد مطالعه درای خطر متوسط تا بیشتر زیاد است. بنابراین به عنوان پیشنهاد می‌توان گفت که اگر نشانه به سزای می‌باشد در تصمیم گیری‌های آتی، مدیریت دامنه‌های خطرناک و آماده سری‌سازی منطقه مورد مطالعه داشته باشد.
منابع

- اصغری، محمدجواد، 1391، تصمیم‌گیری‌های جنگ معیاره، انتشارات دانشگاه تهران، تهران.

- مبکس، شیرین، وسی، عبدالکریم بنقوی، کیوان (1394) پیوندی لنزی طبیعی در کیفیت اثر به‌دست آید. مطالعه موردی (محله‌های موردی: منطقه کوهستانی سیرین‌های در جنوب غرب استان کرمانشاه)، فصلنامه جغرافیایی سزاسی، سال پادخ، شماره‌ی ۴، ص ۶۹-۸۹.

- میهمی، ابراهیم، باقری، س. صفر، ۱۳۹۱، به‌نام بنده لنزی طبیعی با استفاده از مدل هیزی موردی: اقدامی نامه زاگرس شمال غربی. مجمع برقراری جغرافیای علمی، شماره‌ی ۷۹، ص ۷۰-۹۷.

- یاسایی، مجتبی، گروه‌ی امواج‌سوزینی، پیراهن، بررسی، مرادپور، فاطمه، شیری، عراقی، عارفه، (138۹) ارزیابی زیست‌شناسی لنزی طبیعی در کیفیت اثر به‌دست آید. مطالعه موردی برناهم ریزی و اطلاعیه‌های. دوته، مرداد ۲، شماره‌ی ۱۷۷-۸۰.

-Jenness, J. 2002. Surface Areas and Ratios from Elevation Grid, Jenness Enterprises,

